Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
2.
Am J Clin Nutr ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38479550

RESUMO

BACKGROUND: Epidemiological evidence suggests that a potential association between dietary protein intake and cardiovascular disease (CVD) may depend on the protein source, that is, plant- or animal-derived, but past research was limited and inconclusive. OBJECTIVES: To evaluate the association of dietary plant- or animal-derived protein consumption with risk of CVD, and its components ischemic heart disease (IHD) and stroke. METHODS: This analysis in the European Prospective Investigation into Cancer and Nutrition (EPIC)-CVD case-cohort study included 16,244 incident CVD cases (10,784 IHD and 6423 stroke cases) and 15,141 subcohort members from 7 European countries. We investigated the association of estimated dietary protein intake with CVD, IHD, and stroke (total, fatal, and nonfatal) using multivariable-adjusted Prentice-weighted Cox regression. We estimated isocaloric substitutions of replacing fats and carbohydrates with plant- or animal-derived protein and replacing food-specific animal protein with plant protein. Multiplicative interactions between dietary protein and prespecified variables were tested. RESULTS: Neither plant- nor animal-derived protein intake was associated with incident CVD, IHD, or stroke in adjusted analyses without or with macronutrient-specified substitution analyses. Higher plant-derived protein intake was associated with 22% lower total stroke incidence among never smokers [HR 0.78, 95% confidence intervals (CI): 0.62, 0.99], but not among current smokers (HR 1.08, 95% CI: 0.83, 1.40, P-interaction = 0.004). Moreover, higher plant-derived protein (per 3% total energy) when replacing red meat protein (HR 0.52, 95% CI: 0.31, 0.88), processed meat protein (HR 0.39, 95% CI: 0.17, 0.90), and dairy protein (HR 0.54, 95% CI: 0.30, 0.98) was associated with lower incidence of fatal stroke. CONCLUSION: Plant- or animal-derived protein intake was not associated with overall CVD. However, the association of plant-derived protein consumption with lower total stroke incidence among nonsmokers, and with lower incidence of fatal stroke highlights the importance of investigating CVD subtypes and potential interactions. These observations warrant further investigation in diverse populations with varying macronutrient intakes and dietary patterns.

3.
BMC Med ; 22(1): 104, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454425

RESUMO

BACKGROUND: The specific microbiota and associated metabolites linked to non-alcoholic fatty liver disease (NAFLD) are still controversial. Thus, we aimed to understand how the core gut microbiota and metabolites impact NAFLD. METHODS: The data for the discovery cohort were collected from the Guangzhou Nutrition and Health Study (GNHS) follow-up conducted between 2014 and 2018. We collected 272 metadata points from 1546 individuals. The metadata were input into four interpretable machine learning models to identify important gut microbiota associated with NAFLD. These models were subsequently applied to two validation cohorts [the internal validation cohort (n = 377), and the prospective validation cohort (n = 749)] to assess generalizability. We constructed an individual microbiome risk score (MRS) based on the identified gut microbiota and conducted animal faecal microbiome transplantation experiment using faecal samples from individuals with different levels of MRS to determine the relationship between MRS and NAFLD. Additionally, we conducted targeted metabolomic sequencing of faecal samples to analyse potential metabolites. RESULTS: Among the four machine learning models used, the lightGBM algorithm achieved the best performance. A total of 12 taxa-related features of the microbiota were selected by the lightGBM algorithm and further used to calculate the MRS. Increased MRS was positively associated with the presence of NAFLD, with odds ratio (OR) of 1.86 (1.72, 2.02) per 1-unit increase in MRS. An elevated abundance of the faecal microbiota (f__veillonellaceae) was associated with increased NAFLD risk, whereas f__rikenellaceae, f__barnesiellaceae, and s__adolescentis were associated with a decreased presence of NAFLD. Higher levels of specific gut microbiota-derived metabolites of bile acids (taurocholic acid) might be positively associated with both a higher MRS and NAFLD risk. FMT in mice further confirmed a causal association between a higher MRS and the development of NAFLD. CONCLUSIONS: We confirmed that an alteration in the composition of the core gut microbiota might be biologically relevant to NAFLD development. Our work demonstrated the role of the microbiota in the development of NAFLD.


Assuntos
Microbioma Gastrointestinal , Microbiota , Hepatopatia Gordurosa não Alcoólica , Pessoa de Meia-Idade , Humanos , Animais , Camundongos , Idoso , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Vida Independente
4.
J Hazard Mater ; 468: 133784, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382338

RESUMO

The relationship between PM2.5 and metabolic diseases, including type 2 diabetes (T2D), has become increasingly prominent, but the molecular mechanism needs to be further clarified. To help understand the mechanistic association between PM2.5 exposure and human health, we investigated short-term PM2.5 exposure trajectory-related multi-omics characteristics from stool metagenome and metabolome and serum proteome and metabolome in a cohort of 3267 participants (age: 64.4 ± 5.8 years) living in Southern China. And then integrate these features to examine their relationship with T2D. We observed significant differences in overall structure in each omics and 193 individual biomarkers between the high- and low-PM2.5 groups. PM2.5-related features included the disturbance of microbes (carbohydrate metabolism-associated Bacteroides thetaiotaomicron), gut metabolites of amino acids and carbohydrates, serum biomarkers related to lipid metabolism and reducing n-3 fatty acids. The patterns of overall network relationships among the biomarkers differed between T2D and normal participants. The subnetwork membership centered on the hub nodes (fecal rhamnose and glycylproline, serum hippuric acid, and protein TB182) related to high-PM2.5, which well predicted higher T2D prevalence and incidence and a higher level of fasting blood glucose, HbA1C, insulin, and HOMA-IR. Our findings underline crucial PM2.5-related multi-omics biomarkers linking PM2.5 exposure and T2D in humans.


Assuntos
Diabetes Mellitus Tipo 2 , Adulto , Pessoa de Meia-Idade , Idoso , Humanos , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/metabolismo , Multiômica , China/epidemiologia , Biomarcadores , Material Particulado
5.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38045337

RESUMO

Since dietary intake is challenging to directly measure in large-scale cohort studies, we often rely on self-reported instruments (e.g., food frequency questionnaires, 24-hour recalls, and diet records) developed in nutritional epidemiology. Those self-reported instruments are prone to measurement errors, which can lead to inaccuracies in the calculation of nutrient profiles. Currently, few computational methods exist to address this problem. In the present study, we introduce a deep-learning approach --- Microbiome-based nutrient profile corrector (METRIC), which leverages gut microbial compositions to correct random errors in self-reported dietary assessments using 24-hour recalls or diet records. We demonstrate the excellent performance of METRIC in minimizing the simulated random errors, particularly for nutrients metabolized by gut bacteria in both synthetic and three real-world datasets. Further research is warranted to examine the utility of METRIC to correct actual measurement errors in self-reported dietary assessment instruments.

6.
Aging Cell ; 23(2): e14035, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37970652

RESUMO

The role of circulatory proteomics in osteoporosis is unclear. Proteome-wide profiling holds the potential to offer mechanistic insights into osteoporosis. Serum proteome with 413 proteins was profiled by liquid chromatography-tandem mass spectrometry (LC-MS/MS) at baseline, and the 2nd, and 3rd follow-ups (7704 person-tests) in the prospective Chinese cohorts with 9.8 follow-up years: discovery cohort (n = 1785) and internal validation cohort (n = 1630). Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry (DXA) at follow-ups 1 through 3 at lumbar spine (LS) and femoral neck (FN). We used the Light Gradient Boosting Machine (LightGBM) to identify the osteoporosis (OP)-related proteomic features. The relationships between serum proteins and BMD in the two cohorts were estimated by linear mixed-effects model (LMM). Meta-analysis was then performed to explore the combined associations. We identified 53 proteins associated with osteoporosis using LightGBM, and a meta-analysis showed that 22 of these proteins illuminated a significant correlation with BMD (p < 0.05). The most common proteins among them were PHLD, SAMP, PEDF, HPTR, APOA1, SHBG, CO6, A2MG, CBPN, RAIN APOD, and THBG. The identified proteins were used to generate the biological age (BA) of bone. Each 1 SD-year increase in KDM-Proage was associated with higher risk of LS-OP (hazard ratio [HR], 1.25; 95% CI, 1.14-1.36, p = 4.96 × 10-06 ), and FN-OP (HR, 1.13; 95% CI, 1.02-1.23, p = 9.71 × 10-03 ). The findings uncovered that the apolipoproteins, zymoproteins, complements, and binding proteins presented new mechanistic insights into osteoporosis. Serum proteomics could be a crucial indicator for evaluating bone aging.


Assuntos
Osteoporose , Proteoma , Humanos , Estudos Prospectivos , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Osteoporose/genética , Envelhecimento
7.
Lancet Reg Health West Pac ; 39: 100823, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37927990

RESUMO

Background: Continuous glucose monitoring (CGM) has shown potential in improving maternal and neonatal outcomes in individuals with type 1/2 diabetes, but data in gestational diabetes mellitus (GDM) is limited. We aimed to explore the relationship between CGM-derived metrics during pregnancy and pregnancy outcomes among women with GDM. Methods: We recruited 1302 pregnant women with GDM at a mean gestational age of 26.0 weeks and followed them until delivery. Participants underwent a 14-day CGM measurement upon recruitment. The primary outcome was any adverse pregnancy outcome, defined as having at least one of the outcomes: preterm birth, large-for-gestational-age (LGA) birth, fetal distress, premature rupture of membranes, and neonatal intensive care unit (NICU) admission. The individual outcomes included in the primary outcome were considered as secondary outcomes. We conducted multivariable logistic regression to evaluate the association of CGM-derived metrics with these outcomes. Findings: Per 1-SD difference in time above range (TAR), glucose area under the curve (AUC), nighttime mean blood glucose (MBG), daytime MBG, and daily MBG was associated with higher risk of any adverse pregnancy outcome, with odds ratio: 1.22 (95% CI 1.08-1.36), 1.22 (95% CI 1.09-1.37), 1.18 (95% CI 1.05-1.32), 1.21 (95% CI 1.07-1.35), and 1.22 (95% CI 1.09-1.37), respectively. Time in range, TAR, AUC, nighttime MBG, daytime MBG, daily MBG, and mean amplitude of glucose excursions were positively associated, while time blow range was inversely associated with the risk of LGA. Additionally, higher value for TAR was associated with higher risk of NICU admission. We further summarized the potential thresholds of TAR (2.5%) and daily MBG (4.8 mmol/L) to distinguish individuals with and without any adverse pregnancy outcome. Interpretation: The CGM-derived metrics may help identify individuals at higher risk of adverse pregnancy outcomes. These CGM biomarkers could serve as potential new intervention targets to maintain a healthy pregnancy status among women with GDM. Funding: National Key R&D Program of China, National Natural Science Foundation of China, and Westlake Laboratory of Life Sciences and Biomedicine.

8.
BMC Med ; 21(1): 414, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37907866

RESUMO

BACKGROUND: The early life stage is critical for the gut microbiota establishment and development. We aimed to investigate the lifelong impact of famine exposure during early life on the adult gut microbial ecosystem and examine the association of famine-induced disturbance in gut microbiota with type 2 diabetes. METHODS: We profiled the gut microbial composition among 11,513 adults (18-97 years) from three independent cohorts and examined the association of famine exposure during early life with alterations of adult gut microbial diversity and composition. We performed co-abundance network analyses to identify keystone taxa in the three cohorts and constructed an index with the shared keystone taxa across the three cohorts. Among each cohort, we used linear regression to examine the association of famine exposure during early life with the keystone taxa index and assessed the correlation between the keystone taxa index and type 2 diabetes using logistic regression adjusted for potential confounders. We combined the effect estimates from the three cohorts using random-effects meta-analysis. RESULTS: Compared with the no-exposed control group (born during 1962-1964), participants who were exposed to the famine during the first 1000 days of life (born in 1959) had consistently lower gut microbial alpha diversity and alterations in the gut microbial community during adulthood across the three cohorts. Compared with the no-exposed control group, participants who were exposed to famine during the first 1000 days of life were associated with consistently lower levels of keystone taxa index in the three cohorts (pooled beta - 0.29, 95% CI - 0.43, - 0.15). Per 1-standard deviation increment in the keystone taxa index was associated with a 13% lower risk of type 2 diabetes (pooled odds ratio 0.87, 95% CI 0.80, 0.93), with consistent results across three individual cohorts. CONCLUSIONS: These findings reveal a potential role of the gut microbiota in the developmental origins of health and disease (DOHaD) hypothesis, deepening our understanding about the etiology of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Efeitos Tardios da Exposição Pré-Natal , Inanição , Adulto , Humanos , Pessoa de Meia-Idade , China , Estudos de Coortes , Diabetes Mellitus Tipo 2/complicações , População do Leste Asiático , Fome Epidêmica , Microbiota , Inanição/complicações , Adolescente , Adulto Jovem , Idoso , Idoso de 80 Anos ou mais
9.
J Epidemiol ; 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37813622

RESUMO

BACKGROUND: The Guangzhou Nutrition and Health Study (GNHS) aims to assess the determinants of metabolic disease in nutritional aspects, as well as other environmental and genetic factors, and explore possible biomarkers and mechanisms with multi-omics integration. METHODS: The population-based sample of adults in Guangzhou, China (baseline: 40-83 years old; n = 5118) was followed up about every 3 years. All will be tracked via on-site follow-up and health information systems. We assessed detailed information on lifestyle factors, physical activities, dietary assessments, psychological health, cognitive function, body measurements, and muscle function. Instrument tests included dual-energy X-ray absorptiometry scanning, carotid artery and liver ultrasonography evaluations, vascular endothelial function evaluation, upper-abdomen and brain magnetic resonance imaging, and 14-d real-time continuous glucose monitoring tests. We also measured multi-omics, including host genome-wide genotyping, serum metabolome and proteome, gut microbiome (16S rRNA sequencing, metagenome, and internal transcribed spacer 2 sequencing), and fecal metabolome and proteome. RESULTS: The baseline surveys were conducted from 2008 to 2015. Now, we have completed 3 waves. The 3rd and 4th follow-ups have started but have yet to end. A total of 5118 participants aged 40-83 took part in the study. The median age at baseline was approximately 59.0 years and the proportion of female participants was about 69.4%. Among all the participants, 3628 (71%) completed at least one on-site follow-up with a median duration of 9.48 years. CONCLUSION: The cohort will provide data that have been influential in establishing the role of nutrition in metabolic diseases with multi-omics.

10.
Cell Rep Med ; 4(9): 101172, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37652016

RESUMO

Metabolic syndrome (MetS) is a complex metabolic disorder with a global prevalence of 20%-25%. Early identification and intervention would help minimize the global burden on healthcare systems. Here, we measured over 400 proteins from ∼20,000 proteomes using data-independent acquisition mass spectrometry for 7,890 serum samples from a longitudinal cohort of 3,840 participants with two follow-up time points over 10 years. We then built a machine-learning model for predicting the risk of developing MetS within 10 years. Our model, composed of 11 proteins and the age of the individuals, achieved an area under the curve of 0.774 in the validation cohort (n = 242). Using linear mixed models, we found that apolipoproteins, immune-related proteins, and coagulation-related proteins best correlated with MetS development. This population-scale proteomics study broadens our understanding of MetS and may guide the development of prevention and targeted therapies for MetS.


Assuntos
Síndrome Metabólica , Humanos , Síndrome Metabólica/diagnóstico , Síndrome Metabólica/epidemiologia , Prognóstico , Proteômica , Proteoma , Aprendizado de Máquina
11.
Am J Clin Nutr ; 118(3): 637-645, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37482300

RESUMO

BACKGROUND: Furan fatty acid metabolite 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) is a strong biomarker of fish and n-3 polyunsaturated fatty acid (PUFA) intake. The relationship of CMPF with human health has been controversial, especially for type 2 diabetes and chronic kidney disease. OBJECTIVE: We performed a prospective cohort study to examine the association of serum CMPF with incident type 2 diabetes and chronic kidney disease. METHODS: In the Guangzhou Nutrition and Health Study, during a median follow-up of 8.8 y, we used a multivariable-adjusted Poisson regression model to investigate the association of baseline serum CMPF with the incidence of type 2 diabetes (1470 participants and 170 incident cases) and chronic kidney disease (1436 participants and 112 incident cases). We also examined the association of serial measures of serum CMPF with glycemic and renal function biomarkers. Mediation analysis was also performed to examine the contribution of CMPF in the association between marine n-3 PUFAs and risk of type 2 diabetes or chronic kidney disease. RESULTS: Each standard deviation increase in baseline serum CMPF was associated with an 18% lower risk of type 2 diabetes (relative risk: 0.82, 95% confidence interval [CI]: 0.68, 0.99) but was not associated with chronic kidney disease (relative risk: 0.95; 95% CI: 0.77-1.16). Correlation analyses of CMPF with glycemic and renal function biomarkers showed similar results. Mediation analysis suggested that serum CMPF contributed to the inverse association between erythrocyte marine n-3 PUFAs and incident type 2 diabetes (proportion mediated 37%, P-mediation = 0.022). CONCLUSIONS: Our findings suggest that serum CMPF was associated with a lower risk of type 2 diabetes but not chronic kidney disease. This study also suggests that CMPF may be a functional metabolite underlying the protective relationship between marine n-3 PUFA intake and type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Ácidos Graxos Ômega-3 , Nefropatias , Animais , Humanos , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/etiologia , Ácidos Graxos , Estudos de Coortes , Risco , Estudos Prospectivos , Ácidos Graxos Insaturados , Biomarcadores , Furanos
12.
Am J Clin Nutr ; 118(3): 561-571, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37517614

RESUMO

BACKGROUND: Longitudinally conserved microbe-microbe interactions may provide insights to understand the complex dynamic system of early-life gut microbiota among preterm infants. OBJECTIVES: We aimed to profile the covarying network of gut microbiota among preterm infants and investigate its potential influence on host growth (2-5 y). METHODS: We collected time-series stool samples (n = 717 from children and n = 116 from mothers) among 51 preterm and 51 full-term infants from birth up to 5 y of age and among 53 mothers. The included infants underwent time-series measurements of early-life gut microbiota (0-5 y) and growth (2-5 y) from June 2014 to April 2017. The covarying taxa that exhibited consistent covariation from day 1 to year 5 were defined as conserved features in the development of gut microbiota. Childrens' height-for-age z score (HAZ) and weight-for-age z score were calculated according to World Health Organization Child Growth Standards. RESULTS: We observed distinct dynamic patterns of both microbial alpha and beta diversity comparing preterm infants with full-term controls during the very early stage (<3 mo). Moreover, we identified a covarying network containing 10 taxa as a conserved gut microbial feature of these preterm infants from birth to 5 y old. This covarying network was distinctive between preterm and full-term infants before 3 mo of age (P < 0.001) and tended to be similar as the infants grew up. Several covarying taxa of the network during early life (<3 mo) were associated with childhood growth (2-5 y) (eg, Clostridium_sensu_stricto_1 with HAZ, ß = -0.32, q < 0.01), and the human milk feeding duration was a main modulating factor. CONCLUSIONS: Preterm born children possess conserved and distinct covarying microbiota during very early life, which may have a profound influence on their growth later in life. This trial was registered at clinicaltrials.gov as NCT03373721.


Assuntos
Microbioma Gastrointestinal , Recém-Nascido Prematuro , Criança , Feminino , Humanos , Lactente , Recém-Nascido , Leite Humano , Estudos Prospectivos
13.
Nutrients ; 15(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37432284

RESUMO

While the human gut is home to a complex and diverse community of microbes, including bacteria and fungi, research on the gut microbiome has largely focused on bacteria, with relatively little attention given to the gut mycobiome. This study aims to investigate how diets with different dietary macronutrient distributions impact the gut mycobiome. We investigated gut mycobiome response to high-carbohydrate, low-fat (HC) and low-carbohydrate high-fat (LC) diet interventions based on a series of 72-day feeding-based n-of-1 clinical trials. A total of 30 participants were enrolled and underwent three sets of HC and LC dietary interventions in a randomized sequence. Each set lasted for 24 days with a 6-day washout period between dietary interventions. We collected and analyzed the fungal composition of 317 stool samples before and after each intervention period. To account for intra-individual variation across the three sets, we averaged the mycobiome data from the repeated sets for analysis. Of the 30 participants, 28 (aged 22-34 years) completed the entire intervention. Our results revealed a significant increase in gut fungal alpha diversity (p < 0.05) and significant changes in fungal composition (beta diversity, p < 0.05) after the HC dietary intervention. Specifically, we observed the enrichment of five fungal genera (Pleurotus, Kazachstania, Auricularia, Paraphaeosphaeria, Ustilaginaceae sp.; FDR < 0.052) and depletion of one fungal genus (Blumeria; FDR = 0.03) after the HC intervention. After the LC dietary intervention, one fungal genus was enriched (Ustilaginaceae sp.; FDR = 0.003), and five fungal genera were depleted (Blumeria, Agaricomycetes spp., Malassezia, Rhizopus, and Penicillium; FDR < 0.1). This study provides novel evidence on how the gut mycobiome structure and composition change in response to the HC and LC dietary interventions and reveals diet-specific changes in the fungal genera.


Assuntos
Microbioma Gastrointestinal , Micobioma , Humanos , Nutrientes , Dieta com Restrição de Gorduras , Carboidratos
14.
Nature ; 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316592
15.
Mol Nutr Food Res ; 67(17): e2300017, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37377073

RESUMO

SCOPE: Vitamin D is vital to cardiovascular health. This study examines the association between plasma 25-hydroxyvitamin D (25[OH]D) and the progression of carotid intima-media thickness (cIMT) and identifies the potential mediating biomarkers of gut microbiota and metabolites in adults. METHODS AND RESULTS: This 9-year prospective study includes 2975 subjects with plasma 25(OH)D at baseline and determined cIMT every 3 years. Higher circulating 25(OH)D is associated with decreased odds of higher (≥median) 9-year cIMT changes at the common carotid artery (hΔCCA-cIMT) (p-trend < 0.001). Multivariable-adjusted OR (95%CI) of hΔCCA-cIMT for tertiles 2 and 3 (vs. 1) of 25(OH)D is 0.87 (0.73-1.04) and 0.68 (0.57-0.82). Gut microbiome and metabolome analysis identify 18 biomarkers significantly associated with both 25(OH)D and hΔCCA-cIMT, including three microbial genera, seven fecal metabolites, eight serum metabolites, and pathway of synthesis and degradation of ketone bodies. Mediation/path analyses show the scores generated from the overlapped differential gut microbiota, fecal and serum metabolites, and serum acetoacetic acid alone could mediate the beneficial association between 25(OH)D and hΔCCA-cIMT by 10.8%, 23.1%, 59.2%, and 62.0% (all p < 0.05), respectively. CONCLUSIONS: These findings show a beneficial association between plasma 25(OH)D and the CCA-cIMT progression. The identified multi-omics biomarkers provide novel mechanistic insights for the epidemiological association.


Assuntos
Espessura Intima-Media Carotídea , Microbioma Gastrointestinal , Humanos , Adulto , Estudos Prospectivos , Vitamina D , Calcifediol , Biomarcadores , Fatores de Risco
16.
Protein Cell ; 14(11): 787-806, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37099800

RESUMO

Diet and nutrition have a substantial impact on the human microbiome, and interact with the microbiome, especially gut microbiome, to modulate various diseases and health status. Microbiome research has also guided the nutrition field to a more integrative direction, becoming an essential component of the rising area of precision nutrition. In this review, we provide a broad insight into the interplay among diet, nutrition, microbiome, and microbial metabolites for their roles in the human health. Among the microbiome epidemiological studies regarding the associations of diet and nutrition with microbiome and its derived metabolites, we summarize those most reliable findings and highlight evidence for the relationships between diet and disease-associated microbiome and its functional readout. Then, the latest advances of the microbiome-based precision nutrition research and multidisciplinary integration are described. Finally, we discuss several outstanding challenges and opportunities in the field of nutri-microbiome epidemiology.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Dieta
17.
PLoS Med ; 20(4): e1004221, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37104291

RESUMO

BACKGROUND: Self-reported adherence to the Mediterranean diet has been modestly inversely associated with incidence of type 2 diabetes (T2D) in cohort studies. There is uncertainty about the validity and magnitude of this association due to subjective reporting of diet. The association has not been evaluated using an objectively measured biomarker of the Mediterranean diet. METHODS AND FINDINGS: We derived a biomarker score based on 5 circulating carotenoids and 24 fatty acids that discriminated between the Mediterranean or habitual diet arms of a parallel design, 6-month partial-feeding randomised controlled trial (RCT) conducted between 2013 and 2014, the MedLey trial (128 participants out of 166 randomised). We applied this biomarker score in an observational study, the European Prospective Investigation into Cancer and Nutrition (EPIC)-InterAct case-cohort study, to assess the association of the score with T2D incidence over an average of 9.7 years of follow-up since the baseline (1991 to 1998). We included 22,202 participants, of whom 9,453 were T2D cases, with relevant biomarkers from an original case-cohort of 27,779 participants sampled from a cohort of 340,234 people. As a secondary measure of the Mediterranean diet, we used a score estimated from dietary-self report. Within the trial, the biomarker score discriminated well between the 2 arms; the cross-validated C-statistic was 0.88 (95% confidence interval (CI) 0.82 to 0.94). The score was inversely associated with incident T2D in EPIC-InterAct: the hazard ratio (HR) per standard deviation of the score was 0.71 (95% CI: 0.65 to 0.77) following adjustment for sociodemographic, lifestyle and medical factors, and adiposity. In comparison, the HR per standard deviation of the self-reported Mediterranean diet was 0.90 (95% CI: 0.86 to 0.95). Assuming the score was causally associated with T2D, higher adherence to the Mediterranean diet in Western European adults by 10 percentiles of the score was estimated to reduce the incidence of T2D by 11% (95% CI: 7% to 14%). The study limitations included potential measurement error in nutritional biomarkers, unclear specificity of the biomarker score to the Mediterranean diet, and possible residual confounding. CONCLUSIONS: These findings suggest that objectively assessed adherence to the Mediterranean diet is associated with lower risk of T2D and that even modestly higher adherence may have the potential to reduce the population burden of T2D meaningfully. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry (ANZCTR) ACTRN12613000602729 https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=363860.


Assuntos
Diabetes Mellitus Tipo 2 , Dieta Mediterrânea , Neoplasias , Adulto , Humanos , Austrália , Estudos de Coortes , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/prevenção & controle , Biomarcadores , Neoplasias/complicações , Fatores de Risco
18.
Cancer Epidemiol Biomarkers Prev ; 32(6): 809-817, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37012201

RESUMO

BACKGROUND: Human gut microbiome has complex relationships with the host, contributing to metabolism, immunity, and carcinogenesis. METHODS: Summary-level data for gut microbiota and metabolites were obtained from MiBioGen, FINRISK and human metabolome consortia. Summary-level data for colorectal cancer were derived from a genome-wide association study meta-analysis. In forward Mendelian randomization (MR), we employed genetic instrumental variables (IV) for 24 gut microbiota taxa and six bacterial metabolites to examine their causal relationship with colorectal cancer. We also used a lenient threshold for nine apriori gut microbiota taxa as secondary analyses. In reverse MR, we explored association between genetic liability to colorectal neoplasia and abundance of microbiota studied above using 95, 19, and 7 IVs for colorectal cancer, adenoma, and polyps, respectively. RESULTS: Forward MR did not find evidence indicating causal relationship between any of the gut microbiota taxa or six bacterial metabolites tested and colorectal cancer risk. However, reverse MR supported genetic liability to colorectal adenomas was causally related with increased abundance of two taxa: Gammaproteobacteria (ß = 0.027, which represents a 0.027 increase in log-transformed relative abundance values of Gammaproteobacteria for per one-unit increase in log OR of adenoma risk; P = 7.06×10-8), Enterobacteriaceae (ß = 0.023, P = 1.29×10-5). CONCLUSIONS: We find genetic liability to colorectal neoplasia may be associated with abundance of certain microbiota taxa. It is more likely that subset of colorectal cancer genetic liability variants changes gut biology by influencing both gut microbiota and colorectal cancer risk. IMPACT: This study highlights the need of future complementary studies to explore causal mechanisms linking both host genetic variation with gut microbiome and colorectal cancer susceptibility.


Assuntos
Adenoma , Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Neoplasias Colorretais/genética , Neoplasias Colorretais/microbiologia , Bactérias/genética
19.
Clin Nutr ; 42(6): 887-898, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37086617

RESUMO

BACKGROUND & AIMS: Previous studies have suggested that circulating 25-hydroxyvitamin D (25 [OH]D, VD) and the gut microbiota-bile acid axis play crucial roles in metabolic health. Exploring the mediating role of the gut microbiota-bile acid axis would improve our understanding of the mechanisms underlying the effects of VD on human metabolic health. This study examined the association between plasma 25(OH)D and the prevalence/incidence of metabolic syndrome (MetS) and the mediating role of the gut microbiota-bile acid axis. METHODS: This prospective study included 3180 participants with plasma 25(OH)D data at baseline and 2966 participants with a 9-year follow-up. MetS was determined every three years. The gut microbiota was analyzed by 16S rRNA sequencing in 1752 participants, and targeted bile acid metabolites in feces were further determined in 974 participants using UPLC‒MS/MS at the middle of the study. Mediating roles of microbiota and bile acids in the VD-MetS associations were analyzed using mediation/path analyses adjusted for potential confounders. RESULTS: Among the 2966 participants who were followed-up, 1520, 193, 647, and 606 were MetS-free (normal), recovered, had incident MetS, and had persistent MetS, respectively. The multivariable-adjusted ORs (95% CIs) of MetS prevalence were 0.65 (0.50, 0.84) for baseline MetS and 0.46 (0.33, 0.65) for 9-year persistent MetS in quartile 4 (compared to quartile 1) of plasma 25(OH)D (median: 37.7 vs. 19.6, ng/ml). The corresponding HR (95% CI) of 9-year MetS incidence was 0.71 (0.56, 0.90) (all P-trend < 0.05). Higher VD concentrations were associated with greater α-diversity of the gut microbiota, which was inversely correlated with MetS risk. The groups classified by VD and MetS status had significantly different ß-diversity. Ruminiclostridium-6 and Christensenellaceae R-7 group were enriched in the high-VD group and were inversely associated with MetS. However, opposite associations were observed for Lachnoclostridium and Acidaminococcus. The overlapping differential microbial score (ODMS) developed from the four differential genera explained 12.2% of the VD-MetS associations (Pmediation = 0.015). Furthermore, the fecal bile acid score created from 11 differential bile acids related to ODMS and MetS mediated 34.2% of the association between ODMS and MetS (Pmediation = 0.029). Path analyses showed that the inverse association between plasma 25(OH)D and MetS could be mediated by the gut microbiota-bile acid axis. CONCLUSIONS: The findings suggest that the gut microbiota-bile acid axis partially mediates the beneficial association between plasma 25(OH)D and the risk of persistent MetS and incident MetS in the Chinese population.


Assuntos
Microbioma Gastrointestinal , Síndrome Metabólica , Adulto , Humanos , Estudos Prospectivos , Ácidos e Sais Biliares , RNA Ribossômico 16S , Cromatografia Líquida , População do Leste Asiático , Espectrometria de Massas em Tandem , Vitamina D , Vitaminas
20.
Nat Commun ; 14(1): 896, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797296

RESUMO

Identification of protein quantitative trait loci (pQTL) helps understand the underlying mechanisms of diseases and discover promising targets for pharmacological intervention. For most important class of drug targets, genetic evidence needs to be generalizable to diverse populations. Given that the majority of the previous studies were conducted in European ancestry populations, little is known about the protein-associated genetic variants in East Asians. Based on data-independent acquisition mass spectrometry technique, we conduct genome-wide association analyses for 304 unique proteins in 2,958 Han Chinese participants. We identify 195 genetic variant-protein associations. Colocalization and Mendelian randomization analyses highlight 60 gene-protein-phenotype associations, 45 of which (75%) have not been prioritized in Europeans previously. Further cross-ancestry analyses uncover key proteins that contributed to the differences in the obesity-induced diabetes and coronary artery disease susceptibility. These findings provide novel druggable proteins as well as a unique resource for the trans-ancestry evaluation of protein-targeted drug discovery.


Assuntos
Doenças Cardiovasculares , Proteoma , Humanos , Proteoma/genética , Estudo de Associação Genômica Ampla/métodos , Genótipo , Fenótipo , Doenças Cardiovasculares/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...